慶應SFC 総合政策学部 情報入試 2018年 大問Ⅳ 過去問解説

アナグリフとは、異なる角度で撮影した画像を各々赤と青のフィルターをかけて重ねて投影し、左右に赤と青の異なるフィルターをつけた眼鏡をかけて鑑賞することで、両目の視差を利用して立体視する方式である。
よってアナグリフとなる。

右目は赤色で構成される画像Aは見えず、画像Bが見える。
左目は青色で構成される画像Bは見えず、画像Aが見える。
この視差のある画像を提示するのである。

右目をR、左目をL、視認位置のロゴの左端をFとすると、右目用に表示するロゴの左端R’と左目用に表示するロゴの左端L’は次の図のようになる。

R’L’の中点からスクリーン中央までの距離は、三角形が相似になることにより
x:150=2000:1500
で求められるので、200mmである。
R’L’も三角形が相似になることにより
x:60=500:1500
で求められるので、20mmである。
左端からR’までの距離は
500-200-10=290mm
であり、L’までの距離は
500-200+10=310mm
よって、ピクセルに変換するとそれぞれ
580ピクセル
620ピクセル
となる。

次は次の図のようになる。

R”L”の中点からスクリーン中央までの距離は、三角形が相似になることにより
150:x=2500:2000
で求められるので、120mmである。
R”L”も三角形が相似になることにより
x:60=500:2500
で求められるので、12mmである。
左端からR”までの距離は
500-120+6=386mm
であり、L”までの距離は
500-120-6=374mm
よって、ピクセルに変換するとそれぞれ
772ピクセル
748ピクセル
となる。

(66)の選択肢において
(1)は
 = 600
(2)は
 = 1200t
(3)は
 = 1200(1-t)
(4)は
 = 3600t(1-t)
である。
tが0から1まで変化するときに、

が0から増加し、その後減少して0になるようにすればよい。
(1)は一定
(2)は増加のみ
(3)は減少のみ
(4)は、グラフを描くと二次関数のグラフとなり、増加と減少が含まれている。
よって(4)である。

AO入試・小論文に関するご相談・10日間無料添削はこちらから

「AO入試、どうしたらいいか分からない……」「小論文、添削してくれる人がいない……」という方は、こちらからご相談ください。
(毎日学習会の代表林が相談対応させていただきます!)









コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です